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Abstract

In the estimation of proportions by pooled testing, the MLE is biased. Hepworth and Biggerstaff 

(JABES, 22:602–614, 2017) proposed an estimator based on the bias correction method of Firth 

(Biometrika 80:27–38, 1993) and showed that it is almost unbiased across a range of pooled 

testing problems involving no misclassification. We now extend their work to allow for imperfect 

testing. We derive the estimator, provide a Newton–Raphson iterative formula for its computation 

and test it in situations involving equal or unequal pool sizes, drawing on problems encountered 

in plant disease assessment and prevalence estimation of mosquito-borne viruses. Our estimator is 

highly effective at reducing the bias for prevalences consistent with the pooled testing procedure 

employed.
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1. INTRODUCTION

Estimation of proportions can sometimes be greatly facilitated by pooled testing, in which 

individuals are pooled together and tested as a group for the presence of an attribute, 

usually a marker of disease or infection. Pooled testing (or group testing) is being applied 

in an increasing number of fields, including HIV prevalence estimation (Zhang et al. 2014), 

drug discovery (Hughes-Oliver 2006) and chronic illnesses in farm animals (Dhand et al. 

2007). Two important areas of application, corresponding to the authors’ involvement, are 

assessment of plant disease levels (e.g., Liu et al. 2011), and estimation of virus prevalence 

in mosquito vectors (e.g., Komar et al. 2015). Plant disease assessment often arises from 

sampling a field crop or glasshouse, and pools sizes are generally not large; mosquitoes 

usually pool more haphazardly in traps, and pool sizes can be very large.
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For pooled testing with a fixed sample size, the maximum likelihood estimator (MLE) of 

a proportion p is positively biased, except in the trivial case of pools of size 1. Swallow 

(1985) illustrated the extent of the problem, with tables of bias for a range of pool 

sizes and numbers of pools. Various approaches have been proposed to address this bias. 

Some have focused on study design, such as Hepworth and Watson (2009), who proposed 

sequential testing with pools of decreasing size. They also suggested a numerical correction 

based on calculating the expectation of the estimator at p equal to the MLE (p) for each 

outcome, and adjusting accordingly, with possible iteration of this process. Other studies 

have searched for an analytical solution, the most successful being Burrows (1987), who 

derived a bias correction to the MLE for equal pool sizes. His correction, which effectively 

added approximately half an additional negative pool, resulted in a “shrinkage” estimator 

with less than 5% of the bias of the MLE. Colon et al. (2001) compared Burrows’ estimator 

to a range of other estimators and found it to have the least bias overall. Hepworth and 

Watson (2009) investigated various ways of extending Burrows’ correction to unequal pool 

sizes, but they were essentially arbitrary, and none proved to be entirely satisfactory.

Gart (1991) described a general bias correction method for adjusting the MLE. Applying 

this method to pooled testing with unequal pool sizes mostly works well (Hepworth and 

Watson 2009). It also removes most of the bias when applied to pooled testing following 

inverse sampling (Hepworth 2013). One disadvantage of Gart’s method is that it cannot be 

used on the upper boundary of the parameter space (p = 1). It also tends to over-correct as p
increases.

Hepworth and Biggerstaff (2017) showed that the general bias correction method introduced 

by Firth (1993), and subsequently applied to many statistical problems, is equivalent to 

Burrows’ method for equal pool sizes. Firth’s method is therefore an obvious way to extend 

Burrows’ correction to unequal pool sizes. Hepworth and Biggerstaff (2017) examined the 

resulting bias-corrected estimator and found it to be almost unbiased across a range of 

pooled testing problems, and less biased overall than the estimator arising from Gart’s 

correction. Rather than finding the MLE and then correcting it using the bias b(p) (as Gart’s 

method does), Firth’s method is based on a modification to the score function S(p) and 

requires the solution to

S(p) − I (p) b(p) = 0

(1)

where I(p) is the expected information function. Rather than being corrective, this method is 

preventative, which has the advantage of avoiding undefined parameter estimates.

All of the work described so far has assumed perfect testing (no misclassification of 

positives or negatives). This assumption is appropriate in some situations, but not others. 

For example, Burkhalter et al. (2014) reported a sensitivity of 97.6% in testing individual 

mosquitoes for West Nile virus, and a range of values for different pool sizes. The earliest 

study to quantify the effect of misclassification on pooled testing was that of Tu et al. 

(1994), who derived the MLE and its asymptotic variance for equal pool sizes. Others have 
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since derived exact confidence intervals (Reiczigel et al. 2010) and sample size formulae 

(e.g., Messam et al. 2008). Imperfect testing has been shown not to diminish the usefulness 

of pooled testing; in fact, Liu et al. (2012) showed that with moderate pool sizes it provides 

more efficient estimation than fully observed data over a wide range of disease prevalences. 

However, the testing errors need to be accounted for in estimation of p, including correction 

for bias.

This paper extends Firth’s bias correction to imperfect testing, thus creating a new estimator 

for pooled testing with misclassification. We firstly derive the expressions needed for 

the estimator, using the log-likelihood and related quantities and their derivatives. To 

facilitate computation, we derive a Newton–Raphson iterative formula for calculating the 

estimator. We then compare the new estimator with the corresponding estimator derived 

using Gart’s method, using pooled testing examples from plant virus testing. Following a 

similar approach to Hepworth and Biggerstaff (2017), the new estimator is then evaluated 

for a variety of pooled testing problems, chosen to reflect real situations in either plant 

disease assessment or mosquito-borne viruses. We show that Firth’s method eliminates most 

of the bias, especially at smaller prevalences.

2. FIRTH’S BIAS CORRECTION APPLIED TO IMPERFECT POOLED 

TESTING

Suppose that for i = 1, …, d, ni pools of size mi are tested, of which Xi = xi pools are positive. 

The total number of individuals is N = ∑i = 1
d nimi. Let a and b denote the assumed known 

sensitivity and specificity of the test, respectively, and to ease presentation, assume no loss 

of either due to pooling; we note that this assumption may be relaxed, as our computations 

are easily seen to extend to the more general case by subscripting a and b with i. Assuming 

that the individuals in the pools follow i.i.d. Bernoulli distributions with parameter p, the 

binomial parameter for the distribution of Xi is

πi(p) = a 1 − (1 − p)mi + (1 − b)(1 − p)mi = a − r(1 − p)mi

where r = a + b − 1. The quantity r was suggested by Youden (1950) as a measure of 

overall performance of the test, and by others as a level of “informedness”. Here we use 

r principally to simplify the complexity of mathematical expressions. The log-likelihood is

l(p; x) = ∑
i = 1

d
log

ni

xi
+ xi log πi(p) + (ni − xi) log [1 − πi(p)]

where x = (x1, …, xd). For ease of presentation, we temporarily drop the indexing subscript i
and the functional notation on π(p). Using derivatives of π(p) and of the log-likelihood, it can 

be shown (see “Appendix 1”) that the score function is

S(p) = m(a − π)(x − nπ)
(1 − p)π(1 − π) .
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In the case that all pools are of equal size m, with x of the n pools positive, the solution 

requires only that the right bracket of the numerator be equated to 0, in which case the MLE 

is

p = 1 − a − x ∕ n
r

1 ∕ m

(2)

provided the proportion of positive pools x ∕ n is between 1 − b and a (Cowling et al. 1999). 

For a = b = 1 (perfect testing), this simplifies to the well-known formula

p = 1 − (1 − x ∕ n)1 ∕ m .

Using the higher-order derivatives of the likelihood (see “Appendix 1”), we find that the 

information is

I (p) = nm2(a − π)2

(1 − p)2π(1 − π)
.

The remaining quantity needed to implement Firth’s correction is the bias, which is 

approximately

b(p) = −
2dI(p)

dp + E d3l
dp3

2[I (p)]2

(3)

(Gart 1991). Each term in (3) was derived for pooled testing by Hepworth (2005) for perfect 

testing and employed by Hepworth and Biggerstaff (2017) to implement the Firth correction. 

It can be shown (see “Appendix 1”) that the numerator of the bias simplifies to

2dI(p)
d p + E d3l

d p3 = − nm2(m − 1)(a − π)2

(1 − p)3π(1 − π)
.

(4)

Recalling that π = a − r(1 − p)m, and putting together the score (A.1), the information (A.2), 

and the numerator of the bias (A.4) and adding back indices, we have a relatively simplified 

expression for the Firth adjusted score:
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S∗(p) = S(p) − I (p)b(p)

= 1
1 − p ∑

i = 1

d mi(a − πi)(xi − niπi)
πi(1 − πi) − 1

2
∑i = 1

d nimi
2(mi − 1)(a − πi)2

πi(1 − πi)

∑i = 1
d nimi

2(a − πi)2
πi(1 − πi)

.

= 1
1 − p ∑

i = 1

d mi(a − πi)(xi − niπi)
πi(1 − πi) − 1

2wi(mi − 1) ,

(5)

with

vi = nimi
2(a − πi)2

(1 − p)2πi(1 − πi)

as the individual-pool contribution to the information, and wi = vi ∕ ∑i vi.

The common pool size Firth adjusted score is thus

S∗(p) = S(p) − 1
2

m − 1
1 − p = 1

1 − p
m(a − π)(x − nπ)

π(1 − π) − 1
2(m − 1) .

Setting this expression equal to 0 gives a quadratic equation in π. Writing x = x ∕ n, this 

equation is

[2mn + (m − 1)] π2 − [2mn (x + a) + m − 1] π + 2mnax = 0 .

The solution π̆ for π in this equation follows directly as the smaller root in the quadratic 

formula, noting that erroneous solutions should lead to re-evaluation of the specifications for 

a and b. Then the subsequent Firth corrected estimate for p is p̆ = 1 − (a − π̆) ∕ r 1 ∕ m.

In computing a solution for p to S∗(p) = 0 in the general expression in Eq. (5), the leading 

factor has no role, so let S∗(p) be the function S∗(p) without this. A convenient, if iterative, 

computational approach is to use the Newton–Raphson method. To implement this, we need 

the derivative S∗′(p), which after some straightforward computation utilizing the chain rule, 

we have as

S∗′(p) = ∑
i = 1

d
mi

2 [xi − ni(1 − a)]πi
3 + a[ni(1 − a) − 3xi]πi

2 + a(2a + 1)xiπi − a2xi

(1 − p)πi
2(1 − πi)2

− 1
2wi

′(mi − 1)

where vi
′ = vi

′(p) = dI (p) ∕ d p from (A.3) with subscript i, and
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wi
′ = wi

′(p) = vi
′∑j vj − vi∑j vj

′

∑j vj
2 .

Finally, the Newton–Raphson recursion is

pk + 1 = pk − S∗(pk)
S∗′(pk)

with starting value at k = 0 pre-determined, using, for example, the Firth estimate assuming 

a perfect test. R code (www.r-project.org) for performing the Newton–Raphson iterations is 

in “Appendix 2”.

3. SMALL POOLED TESTING EXAMPLES

We illustrate Firth’s bias correction method using two small pooled testing examples. The 

first example, with equal pool sizes, is described in Hepworth and Watson (2009) and 

arose in the context of testing carnations for viruses. A collection of 200 carnation plants 

were tested in 8 pools of 25, for which we adopt the notation N :mn = 200:258. Consider 

the outcome x = 6 positive pools. Assuming perfect testing, the MLE is 0.0539, and the 

Firth bias-corrected estimate, which we denote p̆, is 0.0480. With sensitivity a = 0.95 and 

specificity b = 0.99, applying (2) results in p = 0.0600. Assuming a < 1 has the effect of 

increasing the estimate, and assuming b < 1 has the effect of decreasing it; the net effect here 

is an increase. Applying the Firth correction to this results in p̆ = 0.0515. If the sensitivity is 

assumed much lower at a = 0.8 (keeping b at 0.99), the effect is stronger, with p = 0.1045, 

but the effect of the Firth correction is also substantial, with p̆ = 0.0658. If the specificity is 

assumed much lower at b = 0.8 (keeping a at 0.95), the effect is not as great, with p = 0.0515
and p̆ = 0.0429.

The second example is described by Hepworth and Biggerstaff (2017) and also arose in the 

assessment of virus levels in plant populations, with two pool sizes. There were 8 pools of 

20 and 8 pools of 5, which in the above notation is written 200 : 208 58. Before considering 

the bias of the estimators, it is useful to examine the estimates themselves for a range of 

outcomes; these are presented in Table 1, with the outcomes selected to give a range of 

values for the estimates. The MLE and the bias-corrected estimate are shown for perfect 

testing, and for imperfect testing with a = 0.95, b = 0.99 for illustration. We use these values 

of a and b throughout this paper, to reflect the fact that, in practice, loss of sensitivity is 

usually greater than loss of specificity.

The estimates behave in a predictable way, though for outcomes (5, 7) and (7, 8), 

the assumption of imperfect testing (a < 1 in particular) results in a very large upward 

adjustment, whether or not the Firth bias correction is applied. These outcomes are of small 

probability and are somewhat incompatible with the statistical model, because there is a 

larger proportion of positive pools of size 5 than of size 20. Such incompatibilities are 
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not necessarily problematical in practice, as the assumed sensitivity or specificity can be 

re-evaluated and revised as appropriate before final prevalence estimates are made.

For evaluation of the bias of p̆, rather than examining the entire parameter space [p ∈ (0, 1)], 
it is more useful to consider values of p consistent with the design of the testing procedure. 

We use p ≤ ψ, where ψ is the value of p at which the probability of all positive pools is 

0.05 under perfect testing, an approach suggested by Hepworth and Watson (2009). All 

positive pools (xi = ni, i = 1, …, d) are an uninformative outcome (even though the Firth 

method admits a solution in this case), and any pooled testing procedure should aim for its 

probability to be small. For this example, ψ = 0.211.

Table 2 shows the expected value of the estimators corrected by either Gart’s or Firth’s 

method for a = 0.95 and b = 0.99, together with the percentage bias and root mean squared 

error (RMSE), for selected values of p. The corresponding figures for the MLE are also 

shown. Both corrected estimators are almost unbiased for small p. The bias is still very 

small for p up to around 0.15 for Gart’s method, and for p up to around 0.20 for Firth’s 

method. Above that, the bias for both methods becomes more negative, especially for the 

Gart estimator, though the larger values of p in Table 2 are unlikely to be encountered in 

typical applications. The RMSE is very similar for the two estimators, and it essentially 

represents the standard deviation, due to the very small bias. Both estimators have smaller 

RMSE than the MLE, especially for larger p.

The negative bias for larger p is greater than that observed for the corresponding estimators 

for perfect testing [see Table 2 of Hepworth and Biggerstaff (2017)]. For example, at 

p = 0.20 the percentage bias values of −4.94 and −1.25 for Gart and Firth, respectively, 

are larger than the corresponding values of −0.85 and −0.30 for perfect testing. The 

RMSE values here are slightly larger for Firth’s correction, and about the same for Gart’s 

correction, compared to those for perfect testing.

4. LARGE POOLED TESTING EXAMPLES

We now focus entirely on Firth’s bias correction, as we consider a range of larger examples, 

with N = 500, 1000 or 5000, and between 1 and 4 different pool sizes. These are the same 

examples used by Hepworth and Biggerstaff (2017) for evaluation of estimators with perfect 

testing and are reflective of procedures used in some applications by the researchers at the 

US Centers for Disease Control and Prevention in assessing virus prevalence in mosquitoes.

For these larger examples, it was sometimes the case that not all outcomes admitted a 

solution to S∗(p) = 0 for all values of p considered, and occasionally there was more than one 

solution. This occurred mostly for very small x, due to the specificity being less than 1. This 

is essentially a multidimensional extension of the restriction x ∕ n > 1 − b for equal group 

sizes (we comment on this in Discussion). The problematical outcomes were generally of 

very small probability and, therefore, had a minimal effect on bias calculations. To address 

the computational issues, outcomes with probability less than 10−5 were excluded from the 

bias calculations, and the probabilities of other outcomes scaled to sum to 1. Remaining 
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outcomes which failed to converge to a solution were given an estimate of p̆ = ψ ∕ 1000, to 

be consistent with the small values of x.

Table 3 shows the mean absolute percentage bias and RMSE, calculated over 100 equally 

spaced points in the interval [ψ ∕ 100, ψ], for a = 0.95 and b = 0.99. Also shown is the bias at 

p = ψ, where its maximum absolute value consistently occurs across the range [0, ψ].

Figure 1 plots the bias of the estimator for six of the procedures listed in Table 3, selected to 

show a range of N :mn and the resulting bias patterns. These are the same six procedures for 

which the bias was plotted for perfect testing by Hepworth and Biggerstaff (2017). One of 

the plots arises from equal pool sizes, two of them from 2 pool sizes, two from 3 pool sizes 

and one from 4.

These results confirm that Firth’s correction method is effective in keeping the bias small. 

The mean percentage (absolute) bias is well under 1% for most pooled testing procedures; 

the only exceptions are those with a very small number of pools (10 or fewer), for which the 

worst bias (at p = ψ) is still very small. These results are not as good as for perfect testing, 

where the corresponding values were less than 0.6% for all of the procedures shown in Table 

3 (Hepworth and Biggerstaff 2017). However, they would likely be satisfactory for most 

practitioners looking to make a bias correction. The plots show that the bias is virtually zero 

for p less than about 2ψ ∕ 3, and it then becomes negative at an increasing rate.

The average RMSE is generally larger than that observed for perfect testing (see Table 3, 

Hepworth and Biggerstaff 2017), though not markedly so—the largest ratio is 0.0213/0.0135 

= 1.58, for 5000 : 51000. The average RMSE is generally larger for small pool sizes. 

However, it is still much smaller than the corresponding RMSE for the MLE.

5. DISCUSSION

We have considered bias correction for the estimation of proportions by pooled testing, 

in situations where the testing is assumed to be imperfect, with known sensitivity and 

specificity. We have proposed a new estimator based on the general bias correction 

method of Firth (1993), following its successful application to pooled testing with no 

misclassification (Hepworth and Biggerstaff 2017). The new estimator is very effective at 

reducing the bias of the MLE, particularly for small prevalence, and has the advantage of 

being preventative rather than corrective.

Our estimator can be applied to problems with any number of pool sizes. The terms in the 

bias correction formulae are tedious to derive, but they are all based on the log-likelihood, 

and so can be summed across the different pool sizes. To facilitate computation of estimates, 

we have derived an easily implemented Newton–Raphson iterative formula. For some 

pooled testing procedures, it is possible that not all outcomes admit a solution, due to 

the complicated boundaries imposed by the imperfect testing assumption for multiple pool 

sizes. In our performance evaluations, we addressed this by excluding highly improbable 

outcomes, thus producing a very close approximation to the bias. This complexity is 

unlikely to hinder the use of the estimator in practice, as the specifications for sensitivity 

Hepworth and Biggerstaff Page 8

J Agric Biol Environ Stat. Author manuscript; available in PMC 2024 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and specificity can be re-evaluated in light of an outcome that appears contradictory to the 

assumptions. However, it would be useful for future work to address these issues in more 

detail.

Firth’s correction method virtually eliminates the bias for most prevalence values consistent 

with the design of the pooled testing procedure. It overcorrects for values of p close to ψ, 

unlike the correction for perfect testing. This may not be entirely detrimental—Colon et 

al. (2001) found that for equal pool sizes, the MSE was reduced when a negative bias was 

introduced by allowing greater shrinkage in the estimator.

As stated in Sect. 2, our methods are, in fact, more general than indicated, because they 

cover the case that sensitivity or specificity varies with the pool tested, in particular that they 

may vary with pool size, so long as values for these parameters are known. This follows 

from the fact that throughout our derivations, the parameters a and b could have been given 

a subscript i, and no computations would have changed; should different a or b be needed 

for the same pool size, simply adding another subscript to index this situation would suffice, 

and our computations would carry through. Others have relaxed the assumption of constant 

a and b in the context of finding optimal designs (Zhang et al. 2014), variance estimation 

(Cowling et al. 1999) or dealing with the dilution effect (McMahan et al. 2013). The more 

general applicability of our derivations notwithstanding, our assumptions that sensitivity 

and specificity are known and not dependent on pool size were described by Tebbs et 

al. (2013) as “standard in the group testing literature”. They added that “proper assay 

calibration is needed to ensure that this is reasonable in application”. One way of achieving 

non-dependency is to choose a maximum pool size that makes the assumption reasonable; 

Zhang et al. (2014) gave an example of m = 15 in ELISA-based HIV testing. Finally, 

because of the myriad possibilities in specification, we have evaluated the performance of 

our new estimator only in the case of common sensitivity and specificity. We encourage 

researchers considering applying these methods in applications with different sensitivities 

or specificities by pool to evaluate the methods in their own circumstance, should they be 

concerned that the Firth correction may not yield results qualitatively comparable to those 

we present.

Another extension would be to allow uncertainty in sensitivity and specificity. Such 

uncertainty has been incorporated in interval estimation and sample size determination 

(Messam et al. 2008), but it is not obvious how it should be incorporated in bias 

calculations. Mitchell and Pagano (2012) derived a Burrows-type estimator (essentially 

Firth’s correction, as we showed) for equal pool sizes with uncertain sensitivity and known 

specificity. However, they recognized the circularity of needing the sensitivity to estimate 

the prevalence unbiasedly, and so recommended an iterative estimation technique, which 

would be challenging for practitioners to apply.

Our work provides a foundation for interval estimation of p in the context of bias correction 

and misclassification. As noted in Discussion in Firth (1993), the asymptotic variance of p̆ is 

the inverse of the expected information, ∑i = 1
d Ii(p) −1, so that standard errors and confidence 

intervals may be computed to first order in the usual way; all that is required is for I(p) from 
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Eq. A.2 (see “Appendix 1”) to be subscripted. Further investigations on interval estimation 

remain the subject of future work.

Finally, Firth’s bias correction can be applied to estimation of other parameters related to 

prevalence arising from pooled testing with misclassification. Considering only equal sized 

pools, Roy and Banerjee (2019) did this for the log-odds ratio comparing two subgroups of 

the population being studied and found the corrected estimator to have much smaller bias 

and MSE than the MLE.

APPENDIX 1: DERIVATION OF FIRTH’S BIAS CORRECTION APPLIED TO 

IMPERFECT POOLED TESTING

Recall π(p) = a − r(1 − p)m. The first two derivatives are

dπ(p)
d p = mr(1 − p)m − 1 = m

1 − pr(1 − p)m = m
1 − p [a − π(p)],

d2π(p)
d p2 = − m(m − 1)r(1 − p)m − 2 = − m(m − 1)

(1 − p)2
[a − π(p)] .

From here on, we drop the functional notation on π(p). We need the following derivatives of 

the log-likelihood:

d l
dπ = x

π − n − x
1 − π ,

d2l
dπ2 = − x

π2 − n − x
(1 − π)2

,

d3l
dπ3 = 2x

π3 − 2(n − x)
(1 − π)3

.

From these, we have the score function

S(p) = d l
d p = d l

dπ
dπ
d p = m(a − π)(x − nπ)

(1 − p)π(1 − π) .

(A.1)

The chain rule and product rule can be used to compute the higher-order derivatives of the 

likelihood, as follows:

d2l
d p2 = d2l

dπ2
dπ
d p

2
+ d l

dπ
d2π
d p2,

d3l
d p3 = d3l

dπ3
dπ
d p

3
+ 3 d2l

dπ2
d2π
d p2

dπ
d p + d l

dπ
d3π
d p3 .
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We therefore can obtain the information I(p) as:

I(p) = E − d2l
d p2

= E − − x
π2 − n − x

(1 − π)2
m

1 − p (a − π)
2

− x
π − n − x

1 − π − m(m − 1)(a − π)
(1 − p)2

= n
π + n

1 − π
m

1 − p (a − π)
2

= nm2(a − π)2

(1 − p)2π(1 − π)
.

Computation of the bias (see Eq. 3) requires dI(p) ∕ dp and E d3l ∕ d p3  in addition to I(p). 

The derivation of dI(p) ∕ d p is more tedious than for perfect testing, because our expression 

for I(p) includes both p and π. We remedy this (i.e., put it in terms of π alone and p only 

implicitly) by writing

I (p) = nm2(a − π)2

(1 − p)2π(1 − π)
= nm2(a − π)2

a − π
r

2
mπ(1 − π)

.

(A.2)

Then

dI(p)
d p = dI(p)

dπ
dπ
d p

= nm2

a − π
r

2
mπ(1 − π)[ − 2(a − π)] − (a − π)2 a − π

r

2
m (1 − 2π) + π(1 − π) 2

m
a − π

r

2 − m
m − 1

r

a − π
r

4
mπ2(1 − π)2

× m
1 − p (a − π)

= − nm2(a − π)2

(1 − p)3π2(1 − π)2
[2(m − 1)π(1 − π) + m(a − π)(1 − 2π)]

(A.3)

noting that r
a − π = (1 − p)−m is useful during the simplification. The final quantity for 

computing the bias b(p) is
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E d3l
d p3 = E 2x

π3 − 2(n − x)
(1 − π)3

m
1 − p (a − π)

3

+ 3 − x
π2 − n − x

(1 − π)2
m

1 − p (a − π) − m(m − 1)(a − π)
(1 − p)3

+ x
π − n − x

1 − π
m(m − 1)(m − 2)(a − π)

(1 − π)3

= 2n
π2 − 2n

(1 − π)2
m

1 − p (a − π)
3

+ 3 n
π + n

1 − π
m2(m − 1)(a − π)2

(1 − p)3

= nm2(a − π)2

(1 − p)3π2(1 − π)2
[2m(1 − 2π)(a − π) + 3(m − 1)π(1 − π])] .

Further simplification results in the following expression for the numerator of the bias (see 

Eq. 3):

2dI(p)
d p + E d3l

d p3 = − nm2(m − 1)(a − π)2

(1 − p)3π(1 − π)
.

(A.4)

APPENDIX 2: R CODE FOR NEWTON–RAPHSON ITERATION TO FIND 

FIRTH’S BIAS-CORRECTED ESTIMATE OF P

"ipooledbinom.firth.NR" <- function(x, m, n = rep(1, length(m)),

              a = rep(1, length(m)), b = rep(1, length(m)),

               tol = 1e-8,

              p.start = NULL){

# if just the regular binomial, return the simple proportion

if(all(m == 1) & all(a == 1) & all(b == 1))

 return(sum(x) / sum(n))

if(sum(x) == 0) return(0)

r <- a + b − 1

# Compute a (default) starting value:

# When a starting value is not specified with p.start,

# this code calls this same function using the Recall()

# functionality, but with forced a = 1 and b = 1.

# This approach is to avoid having to reference a different

# function that gives the perfect Firth estimate, noting

# that this function itself gives the correct, perfect-test

# Firth estimate if a = 1 and b = 1.

# So: use p.start if it is explicitly specified, else

#     compute a starting value

if(!is.null(p.start)){
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   p.new <- p.start

} else {

   p.new <- NULL

   if(is.null(p.start) & is.null(p.new)){

   

      # if all pools are positive, the default starting

      # value given below is 0, so make it something positive

      if(sum(x) == sum(n)){

         p.new <- 1/sum(m*n)

      } else {

         N <- sum(n * m)

         mmw <- N / sum(n) # average pool size, N/sum(n)

     

         # uses proportion of positive pools, sum(x)/sum(n)

         p.new <- Recall(x,m,n,a=1,b=1,tol=tol,

                   p.start=1-(1-sum(x)/sum(n))^(1/mmw))

      }

   }

}

done <- FALSE

iter <- 0

while(!done){

   iter <- iter+1

   p.old <- p.new

   pip <- a - r * (1-p.old)^m

   vi <- n*m^2*(a-pip)^2 / ((1-p.old)^2 * pip * (1-pip))

   wi <- vi / sum(vi)

   vi.prime <- -(n*m^2*(a-pip)^2*(2*(m-1)*pip*(1-pip) +

       m*(a-pip)*(1-2*pip))) / ((1-p.old)^3*pip^2*(1-pip)^2)

   wi.prime <- (vi.prime * sum(vi) - vi *

    sum(vi.prime)) / sum(vi)^2

   tSs <- sum(m*(a-pip)*(x-n*pip)/(pip*(1-pip)) - 0.5*wi*(m-1))

   tSsp <- sum((m^2/(1-p.old)) * ((x-n*(1-a))*pip^3 +

                     (n*a*(1-a)-3*a*x)*pip^2 + a*(2*a+1)*x*pip

                      - a^2*x) /

                     (pip^2*(1-pip)^2) - 0.5*wi.prime*(m-1))

   p.new <- max(0, p.old - tSs / tSsp)

   # 0 rather than 0.01 gave problems in some cases

   if(iter > 10000){

      stop("Too many iterations")

   }

   if(abs(p.new-p.old)<tol)

      done <- TRUE

 }
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 p.new

}
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Figure 1. 
Bias of estimators over p < ψ corrected by Firth’s method, for a range of pooled testing 

procedures, assuming imperfect testing (a = 0.95, b = 0.99).
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Table 1.

Estimates of p using the MLE or the Firth bias correction method for perfect testing and imperfect testing 

(sensitivity = 0.95, specificity = 0.99) for selected outcomes of a procedure with 8 pools of 20 and 8 pools of 5

Testing Method Number of positive pools (x1, x2)

(1, 2) (4, 0) (2, 5) (3, 7) (6, 4) (5, 7) (7, 5) (7, 8) (8, 7) (8, 8)

Perfect MLE 0.016 0.025 0.042 0.067 0.085 0.099 0.128 0.205 0.341 1

Firth 0.016 0.024 0.040 0.064 0.080 0.093 0.118 0.187 0.296 0.455

Imperfect MLE 0.016 0.026 0.044 0.077 0.097 0.394 0.170 1 0.397 1

Firth 0.015 0.025 0.042 0.072 0.089 0.124 0.146 0.455 0.327 0.455
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Table 2.

Bias of estimators corrected by either Gart’s or Firth’s method, assuming sensitivity = 0.95 and specificity = 

0.99, for 8 pools of 20 and 8 pools of 5

p MLE Gart Firth

E(p) % Bias RMSE E(p) % Bias RMSE E(p̆) % Bias RMSE

0.01 0.0106 6.3 0.0083 0.0101 0.70 0.0078 0.0101 0.95 0.0078

0.02 0.0212 5.8 0.0123 0.0200 −0.14 0.0115 0.0200 0.16 0.0115

0.03 0.0319 6.2 0.0161 0.0300 −0.26 0.0147 0.0300 0.11 0.0148

0.04 0.0427 6.9 0.0200 0.0399 −0.34 0.0178 0.0400 0.11 0.0180

0.05 0.0538 7.6 0.0243 0.0498 −0.40 0.0212 0.0501 0.13 0.0213

0.07 0.0766 9.4 0.0352 0.0698 −0.33 0.0290 0.0702 0.31 0.0292

0.10 0.1124 12.4 0.0564 0.0999 −0.05 0.0421 0.1008 0.81 0.0433

0.15 0.1738 15.9 0.1019 0.1477 −1.55 0.0602 0.1509 0.54 0.0655

0.20 0.2402 20.1 0.1613 0.1901 −4.94 0.0745 0.1975 −1.25 0.0823

0.25 0.3165 26.6 0.2266 0.2288 −8.49 0.0879 0.2409 −3.64 0.0939

0.30 0.4010 33.7 0.2643 0.2643 −11.89 0.1008 0.2803 −6.58 0.1007
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Table 3.

Mean percentage absolute bias, RMSE and bias at p = ψ, for the estimator of p corrected by Firth’s method, 

for a range of pooled testing procedures, assuming sensitivity = 0.95 and specificity = 0.99

N mn ψ Mean
∣%bias∣

Mean
RMSE

Bias at
p = ψ

500 5100 0.506 0.40 0.0338 −0.0189

500 1050 0.248 0.54 0.0245 −0.0088

500 2025 0.103 0.82 0.0147 −0.0030

500 5010 0.027 1.97 0.0065 −0.0006

500 1005 0.008 4.57 0.0032 −0.0001

1000 2050 0.133 0.61 0.0137 −0.0053

1000 10010 0.013 1.97 0.0033 −0.0003

1000 5200 0.569 0.46 0.0289 −0.0279

5000 51000 0.687 0.66 0.0213 −0.0528

1000 51005010 0.506 0.38 0.0338 −0.0189

1000 2520 5010 0.078 0.60 0.0110 −0.0023

5000 5500 5050 0.641 0.57 0.0252 −0.0419

5000 25100 5050 0.132 0.73 0.0101 −0.0075

1000 1020 258 5012 0.180 0.43 0.0251 −0.0047

1000 1050 2512 504 0.248 0.47 0.0238 −0.0089

1000 5100 1040 254 0.507 0.39 0.0334 −0.0193

5000 10200 2560 5030 0.344 0.73 0.0229 −0.0222

1000 510 1010 2510 5012 0.261 0.29 0.0400 −0.0043

1000 520 1040 2512 504 0.350 0.28 0.0367 −0.0086

5000 1050 2540 5030 10020 0.248 0.52 0.0262 −0.0089
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